∴|GN|+|GM|=|MP|=6.故G点的轨迹是以M.N为焦点的椭圆.其长半轴长.半焦距.∴短半轴长b=2.∴点G的轨迹方程是 ---5分 查看更多

 

题目列表(包括答案和解析)

(理)已知圆M:(x+
5
2+y2=36,定点N(
5
,0
),点P为圆M上的动点,点G在MP上,且满足|GP|=|GN|
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

(理)已知圆M:(x+2+y2=36,定点N(),点P为圆M上的动点,点G在MP上,且满足|GP|=|GN|
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

函数f(x)=2x和g(x)=x3的图象的示意图如图所示,设两函数的图象交于点 A(x1,y1),B(x2,y2),且x1<x2
(1)请指出示意图中曲线C1,C2分别对应哪一个函数?
(2)证明:x1∈[1,2],且x2∈[9,10];
(3)结合函数图象的示意图,判断f(6),g(6),f(100),g(100)的大小,并按从小到大的顺序排列.

查看答案和解析>>

(2010•泸州二模)已知函数f(x)=-cosx,g(x)=ax-π.
(Ⅰ)若函数h(x)=g(x)-f(x)在x=
π
3
时取得极值,求h(x)的单调递减区间;
(Ⅱ)证明:对任意的x∈R,都有|f′(x)|≤|x|;
(Ⅲ)若a=2,x1=a(a∈[
π
6
6
]
),g(xn+1)=
2
n
f(xn)
,求证:|x1-
π
2
|+|x2-
π
2
|+…+|xn+1-
π
2
|
<π(n∈N×

查看答案和解析>>

已知函数f(x)=3sin(2x-
π
6
)和g(x)=2cos(2x+φ)的图象的对称轴完全相同,其中φ∈(0,
π
2
),则φ=
 

查看答案和解析>>


同步练习册答案