题目列表(包括答案和解析)
已知椭圆C:
的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=
,
|PF2|=
, PF1⊥F1F2.
(1)求椭圆C的方程;(6分)
(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.
(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为
,直线
的方程为
(t为参数),直线
与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线
被曲线C截得的线段长为2,求直线
的极坐标方程.
(本小题满分14分)
已知点
、
,(
)是曲线C上的两点,点
、
关于
轴对称,直线
、
分别交
轴于点
和点
,
(Ⅰ)用
、
、
、
分别表示
和
;
(Ⅱ)某同学发现,当曲线C的方程为:
时,
是一个定值与点
、
、
的位置无关;请你试探究当曲线C的方程为:
时,
的值是否也与点M、N、P的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为
时,探究
与
经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).
已知曲线C:
(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当
解得
,所以m的取值范围是![]()
(2)当m=4时,曲线C的方程为
,点A,B的坐标分别为
,
由
,得![]()
因为直线与曲线C交于不同的两点,所以![]()
即![]()
设点M,N的坐标分别为
,则![]()
![]()
直线BM的方程为
,点G的坐标为![]()
因为直线AN和直线AG的斜率分别为![]()
所以
![]()
![]()
即
,故A,G,N三点共线。
| x2 |
| a2 |
| y2 |
| b2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com