于是F(-a.0). Q 查看更多

 

题目列表(包括答案和解析)

(07年西城区抽样理)(14分)       设,定点Fa,0),直线l :x=-ax轴于点H,点Bl上的动点,过点B垂直于l的直线与线段BF的垂直平分线交于点M.

   (I)求点M的轨迹C的方程;

   (II)设直线BF与曲线C交于PQ两点,证明:向量的夹角相等.

查看答案和解析>>

已知命题P:函数的图象过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,则函数y=f(x)的图象关于点(3,0)对称,则下述结论中正确的是
A.“p且q”真B.“p或q”假C.p真q假D.p假q真

查看答案和解析>>

22.椭圆的中心是原点O,它的短轴长为2,相应于焦点Fc,0)(c>0)的准线lx轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于PQ两点.

(Ⅰ)求椭圆的方程及离心率;

(Ⅱ)若· =0,求直线PQ的方程;

(Ⅲ)设=λλ>1),过点P且平行于准线l的直线与椭圆相交于另一点M,证明=-λ.

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)

已知函数f(x)=2lnxg(x)=ax2+3x.

(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;

(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnxg(x)=ax2+3x.
(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>


同步练习册答案