设的垂直平分线方程: 查看更多

 

题目列表(包括答案和解析)

已知圆,点,点在圆上运动,的垂直平分线交于点

    (Ⅰ)求动点的轨迹的方程;

    (Ⅱ)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若为坐标原点,求直线的斜率

    (Ⅲ)过点且斜率为的动直线交曲线两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>

已知圆C:数学公式,点数学公式,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(Ⅰ)求E的方程;
(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,D,F分别为曲线E与x轴的左,右两交点,若直线DP与曲线E相交于异于D的点N,证明△NPF为钝角三角形.

查看答案和解析>>

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且数学公式=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>


同步练习册答案