题目列表(包括答案和解析)
方程x2+y2+Dx+Ey+F=0表示的曲线是以(-2,3)为圆心,4为半径的圆,则D、E、F的值分别为( )
A.4,-6,3 B.-4,6,3
C.-4,6,-3 D.4,-6,-3
(I)求椭圆C2的标准方程;
(II)设AB是过椭圆C,中心的任意弦,l是线段AB的垂直平分线,M是l上异于椭圆中心的点.
(1) 若|MO|=
|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值。
A.(x-2)2+(y-1)2=1 B.(x-3)2+(y-2)2=4
C.(x-3)2+(y-1)2=1 D.(x-4)2+(y-2)2=4
已知曲线C:
(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当
解得
,所以m的取值范围是![]()
(2)当m=4时,曲线C的方程为
,点A,B的坐标分别为
,
由
,得![]()
因为直线与曲线C交于不同的两点,所以![]()
即![]()
设点M,N的坐标分别为
,则![]()
![]()
直线BM的方程为
,点G的坐标为![]()
因为直线AN和直线AG的斜率分别为![]()
所以
![]()
![]()
即
,故A,G,N三点共线。
设双曲线
的两个焦点分别为F1,F2,离心率为2.
(Ⅰ)求此双曲线的渐近线l1,l2的方程;
(Ⅱ)若A,B分别为l1,l2上的点,且4|AB|=5|F1F2|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com