过原点的平面(原点.平面每对一个得2分) (13) 1 (14) 169 (17) (-∞,2] 查看更多

 

题目列表(包括答案和解析)

已知对任意平面向量
AB
=(x,y)
,将
AB
绕其起点沿顺时针方向旋转θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做将点B绕点A沿顺时针方向旋转θ角得到点P.
(1)已知平面内点A(1,2),点B(1+
2
,2-2
2
)
,将点B绕点A沿顺时针方向旋转
π
4
得到点P,求点P的坐标;
(2)设平面内曲线3x2+3y2+2xy=4上的每一点绕坐标原点O沿顺时针方向旋转
π
4
得到的点的轨迹是曲线C,求曲线C的方程;
(3)过(2)中曲线C的焦点的直线l与曲线C交于不同的两点A、B,当
OA
OB
=0
时,求△AOB的面积.

查看答案和解析>>


同步练习册答案