题目列表(包括答案和解析)
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆
的长轴长是焦距的两倍,其左、右焦点依次为
、
,抛物线![]()
的准线与
轴交于
,椭圆
与抛物线
的一个交点为
.
(1)当
时,求椭圆
的方程;
(2)在(1)的条件下,直线
过焦点
,与抛物线
交于
两点,若弦长
等于
的周长,求直线
的方程;
(3)由抛物线弧![]()
和椭圆弧![]()
![]()
(
)合成的曲线叫“抛椭圆”,是否存在以原点
为直角顶点,另两个顶点
落在“抛椭圆”上的等腰直角三角形
,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆
的长轴长是焦距的两倍,其左、右焦点依次为
、
,抛物线![]()
的准线与
轴交于
,椭圆
与抛物线
的一个交点为
.
(1)当
时,求椭圆
的方程;
(2)在(1)的条件下,直线
过焦点
,与抛物线
交于
两点,若弦长
等于
的周长,求直线
的方程;
(3)由抛物线弧![]()
和椭圆弧![]()
![]()
(
)合成的曲线叫“抛椭圆”,是否存在以原点
为直角顶点,另两个顶点
落在“抛椭圆”上的等腰直角三角形
,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
一、单项选择题(每小题5分,共60分)
1.B 2.B 3.D 4.C 5.C 6.D 7.A 8.D 9.B
10.C 11.B 12.A
二、填空题(每小题4分,共16分)
13.
14.
15.1
16.
三、解答题(本大题共6小题,共74分)
17.解:
是减函数.

又由



18.解:
表示本次比赛组织者可获利400万美元,既本次比赛马刺队(或活塞队)
以4:0获胜,所以
表示本次比赛组织者可获利500万美元,即本次比赛马刺队(或活塞队)
以4:1获胜,所以
同理
故的概率分布为

400
500
600
700




万美元.
19.解:由
平方相加得
此时
再平方相加得


即
,
结合
20.解:

又

(
故

∴四边形ABCD为两组对边相等的四边形.
故四边形ABCD是平行四边形.
21.解:
(1)由
抛物线在A处的切线斜率y′=3,设圆的方程为
.①
又圆心在AB的中垂线上,即
②
由①②得圆心
.
(2)联立直线与圆的方程得
即
.

22.解:
(1)由题意得
,






为的等比数列,
点


为的等差数列,
(2)

(3)
①
当
当
②
由①―②得 




湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com