12.椭圆的长轴长为6.左顶点在圆上.左准线为y轴.则该椅椭圆的离心率e的取值范围是 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:数学公式=1的两个焦点的坐标分别为F1(-1,0)、F2(1,0),点P在椭圆上,数学公式=0且△PF1F2的周长为6.
(Ⅰ)求椭圆C的方程和△PF1F2的外接圆D的方程;
(Ⅱ)A为椭圆C的左顶点,过点F2的直线l与椭圆C交于M、N两点,且M、N均不在x轴上,设直线AM、AN的斜率分别为k1、k2,求k1•k2的值.

查看答案和解析>>

已知椭圆C:=1的两个焦点的坐标分别为F1(-1,0)、F2(1,0),点P在椭圆上,=0且△PF1F2的周长为6.
(Ⅰ)求椭圆C的方程和△PF1F2的外接圆D的方程;
(Ⅱ)A为椭圆C的左顶点,过点F2的直线l与椭圆C交于M、N两点,且M、N均不在x轴上,设直线AM、AN的斜率分别为k1、k2,求k1•k2的值.

查看答案和解析>>

已知椭圆C:=1的两个焦点的坐标分别为F1(-1,0)、F2(1,0),点P在椭圆上,=0且△PF1F2的周长为6.
(Ⅰ)求椭圆C的方程和△PF1F2的外接圆D的方程;
(Ⅱ)A为椭圆C的左顶点,过点F2的直线l与椭圆C交于M、N两点,且M、N均不在x轴上,设直线AM、AN的斜率分别为k1、k2,求k1•k2的值.

查看答案和解析>>

(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.

已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.

(1)当时,求椭圆的方程;

(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;

(3)由抛物线弧和椭圆弧

)合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.

已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.

(1)当时,求椭圆的方程;

(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;

(3)由抛物线弧和椭圆弧

)合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

 

一、单项选择题(每小题5分,共60分)

1.B    2.B    3.D    4.C    5.C    6.D    7.A    8.D    9.B

10.C   11.B   12.A

二、填空题(每小题4分,共16分)

13.

14.

15.1

16.

三、解答题(本大题共6小题,共74分)

17.解:

是减函数.

又由

18.解:

表示本次比赛组织者可获利400万美元,既本次比赛马刺队(或活塞队)

以4:0获胜,所以

表示本次比赛组织者可获利500万美元,即本次比赛马刺队(或活塞队)

以4:1获胜,所以

同理

故的概率分布为

400

500

600

700

 

万美元.

19.解:由

平方相加得

此时

再平方相加得

结合

20.解:

∴四边形ABCD为两组对边相等的四边形.

故四边形ABCD是平行四边形.

21.解:

   (1)由抛物线在A处的切线斜率y′=3,设圆的方程为.①

又圆心在AB的中垂线上,即  ②

由①②得圆心.

   (2)联立直线与圆的方程得

.

22.解:

   (1)由题意得

为的等比数列,

为的等差数列,

   (2)

       

   (3)  ①

   ②

由①―②得

 


同步练习册答案