16.已知过A(0.1)和且与x轴相切的圆只有一个.求的值及圆的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。

(Ⅰ)求这三条曲线方程;

(Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。

查看答案和解析>>

(本小题满分14分)

.已知中心在原点的椭圆的一个焦点为(0 ,),且过点,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C。

(1)求椭圆的标准方程;

(2)求证:直线BC的斜率为定值,并求这个定值。

(3)求三角形ABC面积的最大值。

查看答案和解析>>

(本小题满分14分)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在

第一象限的交点为G.已知抛物线在点G的切线经

过椭圆的右焦点.

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A,B分别是椭圆长轴的左、右端点,试探究在

抛物线上是否存在点P,使得△ABP为直角三角形?

若存在,请指出共有几个这样的点?并说明理由

(不必具体求出这些点的坐标).

查看答案和解析>>

(本小题满分14分)

     一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):

轿车A

轿车B

轿车C

舒适型

100

标准型

300

450

600

已知在该月生产的轿车中随机抽一辆,抽到舒适型轿车B的概率为0.075,按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

(1)求的值;

(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,  8.6, 9.2,  9.6,  8.7,  9.3,  9.0,  8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

(本小题满分14分)

已知以点P为圆心的圆过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C、D,且|CD|=,

(1) 求直线CD的方程;

(2)求圆P的方程;

(3)设点Q在圆P上,试探究使△QAB的面积为8的点Q共有几个?证明你的结论.

查看答案和解析>>


同步练习册答案