题目列表(包括答案和解析)
(本题满分14分)定义:对于函数
,
.若
对定义域内的
恒成立,则称函数
为
函数.(1)请举出一个定义域为
的
函数,并说明理由;(2)对于定义域为
的
函数
,求证:对于定义域内的任意正数
,均有![]()
;
(3)对于值域
的
函数
,求证:
.
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com