题目列表(包括答案和解析)
(1)求数列{| a n|}的通项公式;
(2)求向量a n-1与a n的夹角(n≥2);
(3)当k=
时,把a 1, a 2,…, a n,…中所有与a 1共线的向量按原来的顺序排成一列,记为b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O为坐标原点,求点列{Bn}的极限点B的坐标.〔注:若点坐标为(tn,sn),且
tn=t,
sn=s,则称点B(t,s)为点列的极限点〕
(文)设函数f(x)=5x-6,g(x)=
f(x).
(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);
(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.
16. (本小题满分12分)
如图,在三棱锥P—ABC中,AB⊥BC,AB = BC = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC.
![]()
(1) 求证:ED∥平面PAB;
(2) 求直线AB与平面PAC所成的角;
(3) 当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?
a1=a,an=f(an-1)(n=2,3,4,…),a2≠a1,
f(an)-f(an-1)=k(an-an-1)(n=2,3,4,…).?
其中a为常数,k为非零常数?
(1)令bn=an+1-an(n∈N*),证明数列{bn}是等比数列;?
(2)求数列{an}的通项公式;
(3)当|k|<1时,求
an.
(1)在区间[-2,6]上画出函数f(x)的图像(如图);
(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系,并给出证明;
(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图像位于函数f(x)图像的上方.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com