题目列表(包括答案和解析)
若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
|
分组 |
频数 |
频率 |
|
[-3, -2) |
|
0.10 |
|
[-2, -1) |
8 |
|
|
(1,2] |
|
0.50 |
|
(2,3] |
10 |
|
|
(3,4] |
|
|
|
合计 |
50 |
1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
【解析】(Ⅰ)
|
分组 |
频数 |
频率 |
|
[-3, -2) |
5 |
0.10 |
|
[-2, -1) |
8 |
0.16 |
|
(1,2] |
25 |
0.50 |
|
(2,3] |
10 |
0.2 |
|
(3,4] |
2 |
0.04 |
|
合计 |
50 |
1.00 |
(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.
(Ⅲ)由题可知不合格的概率为
0.01,故可求得这批产品总共有2000,故合格的产品有1980件。
设F1、F2分别为椭圆C:
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点P是(1)中所得椭圆上的动点,当P在何位置时,
最大,说明理由,并求出最大值。
(本小题满分14分)
设点A(2,2),B(5,4),O为原点,点P满足
=
+
,(t为实数);
(1)当点P在x轴上时,求实数t的值;
(2)是否存在t使得四边形OABP为平行四边形?若存在,求实数t的值;否则,说明理由.
(本小题15分)
已知
(m为常数,m>0且
),设
是首项为4,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)若bn=an·
,且数列{bn}的前n项和Sn,当
时,求
;
(3)若cn=
,问是否存在m,使得{cn}中每一项恒小于它后面的项?若存在,
求出m的范围;若不存在,说明理由.
(本小题满分16分)
对于函数
,若存在实数对(
),使得等式
对定义域中的每
一个
都成立,则称函数
是“(
)型函数”.
(1)判断函数
是否为“(
)型函数”,并说明理由;
(2)已知函数
是“(1,4)型函数”, 当
时,都有
成立,且当![]()
时,![]()
![]()
,若,试求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com