若时, 由, 得; --- 4分 查看更多

 

题目列表(包括答案和解析)

若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:

分组

频数

频率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合计

50

1.00

(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;

(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;

(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。

【解析】(Ⅰ)

分组

频数

频率

[-3, -2)

 5

0.10

[-2, -1)

8

0.16 

(1,2]

 25

0.50

(2,3]

10

0.2

(3,4]

 2

0.04

合计

50

1.00

(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.

(Ⅲ)由题可知不合格的概率为0.01,故可求得这批产品总共有2000,故合格的产品有1980件。

 

查看答案和解析>>

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点P是(1)中所得椭圆上的动点,当P在何位置时,最大,说明理由,并求出最大值。

查看答案和解析>>

(本小题满分14分)
设点A(2,2),B(5,4),O为原点,点P满足=+,(t为实数);
(1)当点P在x轴上时,求实数t的值;
(2)是否存在t使得四边形OABP为平行四边形?若存在,求实数t的值;否则,说明理由.

查看答案和解析>>

(本小题15分)
已知(m为常数,m>0且),设是首项为4,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)若bn=an·,且数列{bn}的前n项和Sn,当时,求
(3)若cn=,问是否存在m,使得{cn}中每一项恒小于它后面的项?若存在,
求出m的范围;若不存在,说明理由.

查看答案和解析>>

(本小题满分16分)

 对于函数,若存在实数对(),使得等式对定义域中的每

一个都成立,则称函数是“()型函数”.

(1)判断函数是否为“()型函数”,并说明理由;

(2)已知函数是“(1,4)型函数”, 当时,都有成立,且当

时,,若,试求的取值范围.

 

查看答案和解析>>


同步练习册答案