说明:本题是一道基础题.若直接用通项公式和求和公式求解较复杂.解答中应用等差数列的性质+ =+ .结论巧妙产生.过程简捷.运算简单. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知数列的前项和和通项满足是常数且)。(Ⅰ)求数列的通项公式;(Ⅱ) 当时,试证明

(Ⅲ)设函数,是否存在正整数,使都成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分16分)

点,点A1(x1,0),A2(x,0),…,An(xn,0),…顺次为x轴上的点,其中x1=a(0<a≤1).对于任意n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.(1)求数列{yn}的通项公式,并证明它为等差数列;(2)求证:x- x是常数,并求数列{ x}的通项公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.

查看答案和解析>>


20. (本小题满分13分)
已知数列{an}有a1 = aa2 = p(常数p > 0),对任意的正整数n,且
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.

查看答案和解析>>

 

1.   (本小题满分13分)

已知数列{an}有a1 = aa2 = p(常数p > 0),对任意的正整数n,且

(1) 求a的值;

(2) 试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;

(3) 对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.

 

查看答案和解析>>

(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

(文)已知数列中,

(1)求证数列不是等比数列,并求该数列的通项公式;

(2)求数列的前项和

(3)设数列的前项和为,若对任意恒成立,求的最小值.

 

 

查看答案和解析>>


同步练习册答案