18.如图所示.小球P在A点从静止开始沿光滑的斜面AB运动到B点所用时间为t1.在A点以一定的初速度水平向右抛出.恰好落在B点所用时间为t2.在A点以较大的初速度水平向右抛出.落在水平面BC上所用时间为t3.则t1.t2和t3的大小关系正确的是 A.t1>t2=t3 B.t1< t2= t3 C.t1> t2> t3 D.t1< t2< t3 查看更多

 

题目列表(包括答案和解析)

将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
12

(1)求小球落入A袋中的概率P(A);
(2)在容器入口处依次放入4个小球,记 ξ为落入A袋中的小球个数,试求ξ=3的概率和ξ的数学期望 Eξ;
(3)如果规定在容器入口处放入1个小球,若小球落入A袋奖10 元,若小球落入B袋罚4元,试求所得奖金数η的分布列和数学期望,并回答你是否参加这个游戏?

查看答案和解析>>

精英家教网将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是
12

(Ⅰ)求小球落入A袋中的概率P(A);
(Ⅱ)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.

查看答案和解析>>

精英家教网将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在整个下落过程中它将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
12

(Ⅰ)求小球落入B袋中的概率P(B);
(Ⅱ)在容器入口处依次放入2个小球,记落入A袋中的小球个数为ξ,试求ξ的分布列和ξ的数学期望Eξ.

查看答案和解析>>

(2012•信阳模拟)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,已知小球每次遇到障碍物时,向左、右两边下落的概率都是
12

(Ⅰ)求小球落入A袋的概率P(A)及落入B袋中的概率P(B).
(Ⅱ)在容器的入口处依次放入4个小球,记ξ为落入B袋中的小球个数,试求ξ=3时的概率,并求ξ的期望和方差.

查看答案和解析>>

(1) 在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.已知在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|.

(2) 某旅游景点给游人准备了这样一个游戏,他制作了“迷尼游戏板”:在一块倾斜放置的矩形胶合板上钉着一个形如“等腰三角形”的八行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙,…,第8行9个铁钉之间有8个空隙(如图所示).东方庄家的游戏规则是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付给庄家2元.若小球到达①②③④号球槽,分别奖4元、2元、0元、-2元.(一个玻璃球的滚动方式:通过第1行的空隙向下滚动,小球碰到第二行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙.以后小球按类似方式继续往下滚动,落入第8行的某一个空隙后,最后掉入迷尼板下方的相应球槽内).恰逢周末,某同学看了一个小时,留心数了数,有80人次玩.试用你学过的知识分析,这一小时内游戏庄家是赢是赔? 通过计算,你得到什么启示?

 

查看答案和解析>>


同步练习册答案