如图11.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起.A为公共顶点.∠BAC=∠AGF=90°.它们的斜边长为2.若∆ABC固定不动.∆AFG绕点A旋转.AF.AG与边BC的交点分别为D.E(点D不与点B重合,点E不与点C重合),设BE=m.CD=n. (1)请在图中找出两对相似而不全等的三角形.并选取其中一对进行证明. (2)求m与n的函数关系式.直接写出自变量n的取值范围. (3)以∆ABC的斜边BC所在的直线为x轴.BC边上的高所在的直线为y轴.建立平面直角坐标系.在边BC上找一点D.使BD=CE.求出D点的坐标.并通过计算验证BD+CE=DE. 中的等量关系BD+CE=DE是否始终成立,若成立,请证明,若不成立,请说明理由. 六. 查看更多

 

题目列表(包括答案和解析)

24、在同一平面内有n条直线,任何两条不平行,任何三条不共点.当n=1时,如图(1),一条直线将一个平面分成两个部分;当n=2时,如图(2),两条直线将一个平面分成四个部分;则:当n=3时,三条直线将一个平面分成
7
部分;当n=4时,四条直线将一个平面分成
11
部分;若n条直线将一个平面分成an个部分,n+1条直线将一个平面分成an+1个部分.试探索an、an+1、n之间的关系.

查看答案和解析>>

为减少交通事故的发生,我市在很多危险路段设置了电子监控仪.如图,在坡脚为30°的公路BC上方的A处,有一电子监控仪,一辆轿车行驶到C处,在同一平面内,由A处测得C处的轿车的俯角为15°,AB垂直于水平面且AB=10m,轿车由C行驶到B处用了1s,如果该路段限速,车速不允许超过40km/h(约11.1m/s),请你求出该轿车的速度,并判断是否超速行驶.(结果精确到0.1m/s,参考数据:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

为减少交通事故的发生,我市在很多危险路段设置了电子监控仪.如图,在坡脚为30°的公路BC上方的A处,有一电子监控仪,一辆轿车行驶到C处,在同一平面内,由A处测得C处的轿车的俯角为15°,AB垂直于水平面且AB=10m,轿车由C行驶到B处用了1s,如果该路段限速,车速不允许超过40km/h(约11.1m/s),请你求出该轿车的速度,并判断是否超速行驶.(结果精确到0.1m/s,参考数据:≈1.41,≈1.73)

查看答案和解析>>

为减少交通事故的发生,我市在很多危险路段设置了电子监控仪.如图,在坡脚为30°的公路BC上方的A处,有一电子监控仪,一辆轿车行驶到C处,在同一平面内,由A处测得C处的轿车的俯角为15°,AB垂直于水平面且AB=10m,轿车由C行驶到B处用了1s,如果该路段限速,车速不允许超过40km/h(约11.1m/s),请你求出该轿车的速度,并判断是否超速行驶.(结果精确到0.1m/s,参考数据:数学公式≈1.41,数学公式≈1.73)

查看答案和解析>>

(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:
3
≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为
11.0
11.0
米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

查看答案和解析>>


同步练习册答案