28. .病毒无细胞结构.需要寄生在活细胞才能生存和繁殖 (2)蛋白质与双缩脲试剂显紫色 (3)① RNA蛋白质 ② 基因突变 (4)效应T细胞与被侵染的靶细胞密切接触.使靶细胞裂解死亡.病毒因失去藏身之处而被相应抗体或吞噬细胞消灭. (5)产生针对甲型H1N1流感病毒的抗体.对该病毒所致流感起到免疫预防作用. 查看更多

 

题目列表(包括答案和解析)

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分
(1)已知矩阵M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩阵M的特征值和对应的特征向量;(Ⅲ)计算M100β.
(2)曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),求曲线C在它所在的平面内绕点A旋转一周而形成的图形的周长.
(3)已知a>0,求证:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

(本小题满分14分)集合A是由适合以下性质的函数构成的;对于任意的,都有

  (1)分别判断函数是否在集合A中?并说明理由;

  (2)设函数,试求|2a+b|的取值范围;

  (3)在(2)的条件下,若,且对于满足(2)的每个实数a,存在最小的实数m,使得当恒成立,试求用a表示m的表达式.

查看答案和解析>>

(本小题满分14分)

若函数 (a,b∈R),且其导函数f′ (x)的图象过原点.

(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;

(Ⅱ)若存在x<0使得f′ (x)=-9,求实数a的最大值.

 

查看答案和解析>>

(本题满分14分)集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数,都有.
(1)试判断f(x)= x2及g(x)=log2x是否在集合A中,并说明理由;
(2)设f(x)ÎA且定义域为(0,+¥),值域为(0,1),,试求出一个满足以上条件的函数f (x)的解析式.

查看答案和解析>>


同步练习册答案