题目列表(包括答案和解析)
已知函数f(x)定义在区间(-1,1)上,f(
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
),又数列{an}满足a1=
,an+1=
,设bn=
.
(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bn<
成立,若存在,求出m的最小值;若不存在,请说明理由.
| 1 |
| 2 |
| x-y |
| 1-xy |
| 1 |
| 2 |
| 2an | ||
1+
|
| 1 |
| f(a1) |
| 1 |
| f(a2) |
| 1 |
| f(an) |
| m-8 |
| 4 |
| 1 |
| 2 |
| x-y |
| 1-xy |
| 1 |
| 2 |
| 2an | ||
1+
|
| 1 |
| f(a1) |
| 1 |
| f(a2) |
| 1 |
| f(an) |
| m-8 |
| 4 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com