F1.F2为双曲线的焦点.过作垂直于轴的直线交双曲线与点P且∠P F1F2=300.求双曲线的渐近线方程. 19 F1.F2是的两个焦点.M是双曲线上一点.且.求三角形△F1MF2的面积. 20 已知点 M.动点 P满足条件|PM |-|PN |=.记动点 P的轨 迹为 W. (Ⅰ)求 W 的方程, (Ⅱ)若 A.B 是W上的不同两点.O 是坐标原点.求.的最小值. 21 设双曲线C:的离心率为e.若准线l与两条渐近线相交于P.Q两点.F为右焦点.△FPQ为等边三角形. (1)求双曲线C的离心率e的值, (2)若双曲线C被直线y=ax+b截得的弦长为.求双曲线c的方程. 查看更多

 

题目列表(包括答案和解析)

 

19.((本小题满分12分)

已知动点P与双曲线的两个焦点F1、F2的距离之和为定值2a(a>),且cos∠F1PF2的最小值为.

(1)求动点P的轨迹方程;

(2)若已知D(0,3),M、N在动点P的轨迹上,且=λ,求实数λ的取值范围.

查看答案和解析>>

 (本小题满分12分)已知双曲线2x2-2y2=1的两个焦点为F1F2P为动点,若|PF1|+|PF2|=4.

(1)求动点P的轨迹E的方程;

(2)求cos∠F1PF2的最小值.

查看答案和解析>>

(本小题满分12分)

已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b  (b>0)与圆O相切,并与双曲线相交于A、B两点.

(1)根据条件求出b和k满足的关系式;

(2)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;

(3)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.

 

查看答案和解析>>

(本小题满分12分)

已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线lykx+(b>0)与圆O相切,并与双曲线相交于A、B两点.

(Ⅰ)根据条件求出bk满足的关系式;

(Ⅱ)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;

(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.

 

查看答案和解析>>

(本小题满分12分)

已知双曲线的方程为5x2-4y2=20,左右焦点分别为F1,F2   

(1)求此双曲线的焦点坐标和渐近线方程;

(2)若椭圆与此双曲线有共同的焦点,且有一公共点P满足|PF1|·|PF2|=6,求椭圆的标准方程.

 

 

查看答案和解析>>


同步练习册答案