题目列表(包括答案和解析)
(本题12分)已知:数列
的前n项和为
,满足![]()
(1)求数列
的通项公式![]()
(2)若数列
满足
,
为数列
的前n项和,求证:![]()
(3)数列
中是否存在三项
,
,
成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由。
(本题满分12分)在数列
中,已知
,
(
.
(1)求证:
是等差数列;
(2)求数列
的通项公式
及它的前
项和
.
(本题满分12分)在数列
中,
,
(
),数列
的前
项和为
。(1)证明:数列
是等比数列,并求数列
的通项公式;(2)求
;(3)证明:
。
(本题满分12分)在数列
中,
,
(
),数列
的前
项和为
。(1)证明:数列
是等比数列,并求数列
的通项公式;(2)求
;(3)证明:
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com