13.y=的导数 查看更多

 

题目列表(包括答案和解析)

y=(x+1)(x+2)(x+3)的导数

查看答案和解析>>

导数的概念

(1)对于函数y=f(x),我们把式子称为函数f(x)从x1到x2的_________.换言之,如果自变量x在x0处有增量Δx,那么函数f(x)相应地有增量_________;比值_________就叫做函数y=f(x)在x0到x0Δx之间的_________.

(2)函数y=f(x)在x=x0处的瞬时变化率是_________,我们称它为函数y=f(x)在x=x0处的_________,记作_________,即(x0)=_________.

(3)函数f(x)的导数(x)就是x的一个函数.我们称它为f(x)的_________,简称_________,记作_________.

查看答案和解析>>

导数的意义

(1)导数的几何意义:函数y=f(x)在点x0处的导数(x0)就是曲线y=f(x)在点p(x0,f(x0))处的切线的_________,即_________.

(2)导数的物理意义:函数s=s(t)在点t0处的导数_________,就是当物体的运动方程为s=s(t)时,物体运动在时刻t0时的瞬时速度v,即v=(t0).

查看答案和解析>>

导数的概念

(1)对于函数y=f(x),如果自变量x在x0处有增数Δx,那么函数y相应地有增量_________;比值_________就叫做函数y=f(x)在x0到x0Δx之间的_________.

(2)当Δx→0时,有极限,我们就说y=f(x)在点x0处_________,并把这个极限叫做f(x)在点x0处的导数(或变化率)记作_________或_________,即(x0)=_________=_________,函数f(x)的导数(x)就是当Δx→0时,函数的增量Δy与自变量的增量Δx的比的极限,即(x)=_________=_________.

查看答案和解析>>

导数的意义

(1)导数的几何意义:函数y=f(x)在x0处的导数(x0)就是曲线y=f(x)在点p(x0,f(x0))处的切线的_________,即_________.

(2)导数的物理意义:函数s=s(t)在点t0处的导数_________,就是当物体的运动方程s=s(t)时,物体运动在时刻t0时的瞬时速度v,即v=_________.

查看答案和解析>>

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

B

D

C

C

D

B

A

A

B

C

 

二、填空题:

13.2x    14. x=-1    15.k2=2.143  没有   16.(-∞,-3]

三、解答题:

17.(1)z=1+i    |z|=    (2分)

(2)a=0,b=1             (4分)

18.综合法、分析法均可(略)

19.(1)依题意有:解得a=1,b=-3(3分)

  (2)f(x)=x3-3x   f′(x)=3x2-3

当f′(x)>0,即x>1或x<-1,∴单调递增区间为(-∞,-1),(1,+∞)

当f′(x)>0,-1<x<1,∴单调递减区间为(-1,1)                   (5分)

20.(1)a1=,a2=,a3=,a4=       (2分)

(2)an=                         (3分)

(3)Sn=1-                    (5分)

21.解:依题意,直线斜率显然存在,设直线斜率为k,则直线的方程为:y+1=kx

抛物线y=-与直线相交于A、B两点

x2+2kx-2=0,∴△=4k2+8>0,

设A(x1,x2),B(x2,y2) 则x1+x2=-2k

∵kOA+KOB=1     ∴

即x1+x2=-2=-2k∴k=1

22.(1)a=1,b=3

  (2)∵f(x)=x3+3x2在[m,m+1]上单调递增

     ∴f′(x)=3x2+6x≥0,在[m,m+1]上

     ∵3x2+6x≥0, ∴x≥0或x≤-2

     ∴m+1≤-2或m≥0即m≤-3或m≥0

     ∴m的取值范围是{m|m≤-3或m≥0}

 


同步练习册答案