8.如图5.在ΔAOC与ΔBOC中.若AO=OB.∠1=∠2.加上条件 .则有ΔAOC≌ΔBOC. 查看更多

 

题目列表(包括答案和解析)

如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.
(1)若∠A=∠AOC,求证:∠B=∠BOC;
(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;
(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
精英家教网

查看答案和解析>>

如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
精英家教网

查看答案和解析>>

已知:如图,直线y=
1
3
x
与双曲线y=
k
x
交于A、B两点,且点A的坐标为(6,m).点C(n,4)在双曲线y=
k
x
上,
(1)求双曲线y=
k
x
的解析式;     
(2)求△AOC的面积;
(3)在x轴上是否存在点P,使△COP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.
(1)若直线AB解析式为y=-2x+12,直线OC解析式为y=x,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
精英家教网

查看答案和解析>>


同步练习册答案