题目列表(包括答案和解析)
已知曲线
上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线
的轨迹方程;
(2)若过点
引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线
的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
【解析】第一问利用(1)过点
作直线
的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,
;,化简得
![]()
第三问点N与点M关于X轴对称,设
,, 不妨设
.
由于点M在椭圆C上,所以
.
由已知
,则
,
由于
,故当
时,
取得最小值为
.
计算得,
,故
,又点
在圆
上,代入圆的方程得到
.
故圆T的方程为:![]()
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
![]()
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com