题目列表(包括答案和解析)
(本小题满分13分)
如图7,椭圆
的离心率为
,x轴被曲线
截得的线段长等于C1的长半轴长。
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线
与C2相交于点A,B,直线MA,MB分别与C1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是
.问:是否存在直线l,使得
?请说明理
由。
![]()
(本小题满分13分)如图,
,
分别是椭圆
(a>b>0)的左右焦点,M为椭圆上一点,
垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行。
(1)求椭圆的离心率;
(2)若G为椭圆上不同于长轴端点任一点,求∠
取值范围;
(3)过
且与OM垂直的直线交椭圆于P、Q.![]()
![]()
求椭圆的方程
(本小题满分13分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的
左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭
圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点
分别 为
和![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?
若存在,求
的值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com