A.轴 B.轴 C.直线 D.原点中心对称 查看更多

 

题目列表(包括答案和解析)

中心在坐标原点,焦点在x轴上的椭圆的离心率为
3
3
,且经过点Q(1,
2
3
3
).若分别过椭圆的左右焦点F1,F2的动直线l1、l2相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率k1、k2、k3、k4满足k1+k2=k3+k4. 
(1)求椭圆的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标;若不存在,说明理由.

查看答案和解析>>

中心在原点,焦点在x轴上的椭圆C的焦距为2,两准线间的距离为10.设A(5,0),B(1,0).
(1)求椭圆C的方程;
(2)过点A作直线与椭圆C只有一个公共点D,求过B,D两点,且以AD为切线的圆的方程;
(3)过点A作直线l交椭圆C于P,Q两点,过点P作x轴的垂线交椭圆C于另一点S.若
AP
=t
OA
(t>1),求证:
SB
=t
BQ

查看答案和解析>>

中心在原点,焦点在轴上的双曲线的离心率为,直线与双曲线交于两点,线段中点在第一象限,并且在抛物线上,且到抛物线焦点的距离为,则直线的斜率为(   )

A.           B.           C.           D.

 

查看答案和解析>>

中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点的动直线相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率满足

(1)求椭圆的方程;

(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.

 

查看答案和解析>>

直线x-y-1=0与实轴在y轴上的双曲线x2-y2=m (m≠0)的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m的取值范围是(    )

   A.0<m<1         B.m<0       C.-1<m<0      D.m<-1

 

查看答案和解析>>


同步练习册答案