题目列表(包括答案和解析)
(本小题满分16分)
已知数列
和
,对一切正整数n都有:
成立.
(Ⅰ)如果数列
为常数列,
,求数列
的通项公式;
(Ⅱ)如果数列
的通项公式为
,求证数列
是等比数列.
(Ⅲ)如果数列
是等比数列,数列
是否是等差数列?如果是,求出这个数列的通项公式;如果不是,请说明理由.
(本小题满分16分)
已知数列
是等差数列,数列
是等比数列,且对任意的
,都有
.
(1)若
的首项为4,公比为2,求数列
的前
项和
;
(2)若
.
①求数列
与
的通项公式;
②试探究:数列
中是否存在某一项,它可以表示为该数列中其它
项的和?若存在,请求出该项;若不存在,请说明理由.
(本小题满分16分) [已知数列
满足
,![]()
.
(1)求数列
的通项公式
;
(2)若对每一个正整数
,若将
按从小到大的顺序排列后,此三项均能构成等
差数列, 且公差为
.①求
的值及对应的数列
.
②记
为数列
的前
项和,问是否存在
,使得
对任意正整数
恒成立?若存
在,求出
的最大值;若不存在,请说明理由.
(本小题满分16分)
已知数列
和
,对一切正整数n都有:
成立.
(Ⅰ)如果数列
为常数列,
,求数列
的通项公式;
(Ⅱ)如果数列
的通项公式为
,求证数列
是等比数列.
(Ⅲ)如果数列
是等比数列,数列
是否是等差数列?如果是,求出这个数列的通项公式;如果不是,请说明理由.
(本小题满分16分)
已知数列
满足
.
(1)求数列
的通项公式;
(2)对任意给定的
,是否存在
(
)使
成等差数列?若存在,用
分别表示
和
(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com