8.[解析]:设双曲线方程为:.∵双曲线过点M(4.). ∴有16-4×3=即=4 ∴双曲线方程为: . 9[解析]:解:设动圆圆为C(x,y),半径为r, ∴ |cc2|-|cc1|=1<|c1c2| ∴ 点c的轨迹为双曲线的一支 ∵ .c=1 ∴ ∴ c轨迹方程为4y2-x2=1(y≥) 10[解析]:联立方程组消去y得(2k2-1)x2+4kbx+(2b2+1)=0, 当若b=0.则k,若.不合题意. 当依题意有△=(4kb)2-4(2k2-1)(2b2+1)>0.对所有实数b恒成立.∴2k2<1.得. 查看更多

 

题目列表(包括答案和解析)

设命题:方程表示的图象是双曲线;命题.求使“”为真命题时,实数的取值范围.

【解析】本试题考查了双曲线的方程的运用,以及不等式有解时,参数的取值范围问题,以及符合命题的真值的判定综合试题。

 

查看答案和解析>>

设命题:方程表示的图象是双曲线;命题.求使“”为真命题时,实数的取值范围.

【解析】本试题考查了双曲线的方程的运用,以及不等式有解时,参数的取值范围问题,以及符合命题的真值的判定综合试题。

 

查看答案和解析>>

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>


同步练习册答案