点差法:①设线段与椭圆的交点为, ②把都代入椭圆方程中.两式作差, ③移项为斜率k与中点坐标的关系式. 例3:已知(4.2)是直线l被椭圆+=1所截得的线段的中点.则l的方程是 . 变式3:已知椭圆求(1)以P(8.2)为中点的弦所在直线的方程, (2)斜率为2的平行弦中点的轨迹方程, (3)过Q(8.2)的直线被椭圆截得的弦中点的轨迹方程. 课后练习:1.如果方程表示焦点在y轴上的椭圆.那么实数k的取值范围是( ) A B C D 查看更多

 

题目列表(包括答案和解析)

精英家教网若椭圆E1
x2
a
2
1
+
y2
b
2
1
=1
和椭圆E2
x2
a
2
2
+
y2
b
2
2
=1
满足
a2
a1
=
b2
b1
=m
 (m>0)
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,
6
)
,且与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
32
+
y2
(
3
2
2
)
2
=1
”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>

若椭圆E1和椭圆E2满足,则称这两个椭圆相似,m称为其相似比.
(1)求经过点,且与椭圆相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1和C2交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>

若椭圆E1和椭圆E2满足,则称这两个椭圆相似,m称为其相似比.
(1)求经过点,且与椭圆相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1和C2交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>


同步练习册答案