21. 已知椭圆的左焦点为F1.C上存在一点P到椭圆左焦点的距离与到椭圆右准线的距离相等. (Ⅰ)求椭圆的离心率的取值范围, (Ⅱ)若已知椭圆的左焦点为,右准线为.圆的切线与椭圆交于A.B两点.求证:OA⊥OB(O为坐标原点). 武昌区2010届高三年级元月调研测试 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知F1F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线CPQ两个不同的交点,点P关于x轴的对称点记为M.设=λ.

(Ⅰ)求曲线C的方程;

(Ⅱ)证明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.

 

 

查看答案和解析>>

 

本小题满分14分)

已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于

(1)证明:椭圆上的点到F2的最短距离为

(2)求椭圆的离心率e的取值范围;

(3)设椭圆的短半轴长为1,圆F2轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。

 

 

查看答案和解析>>


本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于
(1)证明:椭圆上的点到F2的最短距离为
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。

查看答案和解析>>

(本小题满分14分)已知椭圆的左右焦点分别为F1、F2,点P在椭圆C上,且PF1⊥F1F2, |PF1|=,  |PF2|=.  

(I)求椭圆C的方程;

(II)若直线L过圆的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。

 

查看答案和解析>>

(本小题满分14分)

已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于

(1)证明:椭圆上的点到F2的最短距离为

(2)求椭圆的离心率e的取值范围;

(3)设椭圆的短半轴长为1,圆F2轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。

查看答案和解析>>


同步练习册答案