题目列表(包括答案和解析)
如图,已知四棱锥
的底面ABCD为正方形,
平面ABCD,E、F分别是BC,PC的中点,
,
.
(1)求证:
平面
;
(2)求二面角
的大小.
![]()
【解析】第一问利用线面垂直的判定定理和建立空间直角坐标系得到法向量来表示二面角的。
![]()
第二问中,以A为原点,如图所示建立直角坐标系
,,
设平面FAE法向量为
,则![]()
,
,
![]()
在四棱锥
中,
平面
,底面
为矩形,
.
(Ⅰ)当
时,求证:
;
(Ⅱ)若
边上有且只有一个点
,使得
,求此时二面角
的余弦值.
![]()
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,![]()
![]()
又因为
,
………………2分
又
,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得![]()
由此知道a=2, 设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
解:(Ⅰ)当
时,底面ABCD为正方形,![]()
![]()
又因为
,
又![]()
………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
![]()
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2,
设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
如图所示的长方体
中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴利用法向量的夹角公式,
,
∴
与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接
,则点
、
,
![]()
∴
,又点
,
,∴![]()
∴
,且
与
不共线,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴
,
∴
与
的夹角为
,即二面角
的大小为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com