题目列表(包括答案和解析)
解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数
的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。
某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费
若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,
(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?
命题“若
,![]()
,![]()
,则![]()
.”可以如下证明:构造函数
,则
,因为对一切
,恒有
,所以
,故得![]()
.
试解决下列问题:
(1)若
,
,![]()
,![]()
,求证![]()
;
(2)试将上述命题推广到n个实数,并证明你的结论.
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:
平面
;
(II)求证:
;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
![]()
【解析】第一问利用线面平行的判定定理,
,得到![]()
第二问中,利用![]()
,所以![]()
又因为
,
,从而得![]()
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明:![]()
分别是
的中点, ![]()
,
. …4分
(Ⅱ)证明:
四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴![]()
![]()
设人的某一特征(如眼睛大小)是由他一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性.纯显性与混合性的都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:
(1)1个孩子有显性决定特征的概率是多少?
(2)2个孩子中至少有一个显性决定的特征的概率是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com