(Ⅱ)求到平面的距离, 查看更多

 

题目列表(包括答案和解析)









(1)求点到平面的距离;
(2)求与平面所成角的大小。

查看答案和解析>>

精英家教网在平面直角坐标系中,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),圆O:x2+y2=a2,且过点A(
a2
c
,0)所作圆的两条切线互相垂直.
(Ⅰ)求椭圆离心率;
(Ⅱ)若直线y=2
3
与圆交于D、E;与椭圆交于M、N,且DE=2MN,求椭圆的方程;
(Ⅲ)设点T(0,3)在椭圆内部,若椭圆C上的点到点P的最远距离不大于5
2
,求椭圆C的短轴长的取值范围.

查看答案和解析>>

在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足
MB
OA
MA
AB
=
MB
BA
,M点的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.

查看答案和解析>>

在平面直角坐标系xOy中,曲线C1的参数方程为
x=2cos
y=2sin?-2
(?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,C2的极坐标方程为ρcos(θ-
π
4
)=
2
,(余弦展开为+号,改题还是答案?)
(1)求曲线C1的极坐标方程及C2的直角坐标方程;
(2)点P为C1上任意一点,求P到C2距离的取值范围.

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,已知点

若点C满足,点C的轨迹与抛物线交于A、B两点.

(I)求证:

(II)在轴正半轴上是否存在一定点,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

A

B

D

B

B

C

B

A

C

D

二.填空题

13. 4 ;          14.  ;      15. 2   ;     16.32 ;

三.解答题.

17.解:(1)  ……………………………2分

  ……………………………4分

  …………………………………………6分

(2)由余弦定理得:

(当且仅当时等号成立)………………9分

  …………………………………………………11分

的面积最大值为  …………………………………………………………12分

18.解:(Ⅰ)由

 …………………2分

   ……………………………………4分

(Ⅱ)由整理得

∴数列是以为首项,以2为公比的等比数列, …………………6分

∵当满足  ………………………………………8分

(Ⅲ)

  ………………………………………………………………10分

∴当时,,当时,

高三数学(理科)(模拟一)答案第1页

即当或2时,。当时,……2分

19.解:(Ⅰ)掷出点数x可能是:1,2,3,4.

分别得:。于是的所有取值分别为:0,1,4 .

因此的所有取值为:0,1,2,4,5,8.  …………………………………………2分

时,可取得最大值8,

此时,; ………………………………………………………4分

时且时,可取得最小值 0.

此时   …………………………………………………………6分

(Ⅱ)由(1)知的所有取值为:0,1,2,4,5,8.

 ……………………………………………………………7分

时,的所有取值为(2,3)、(4,3)、(3,2),(3,4)即

时,的所有取值为(2,2)、(4,4)、(4,2),(2,4)即…8分

时,的所有取值为(1,3)、(3,1)即

时,的所有取值为(1,2)、(2,1)、(1,4),(4,1)即 …9分

所以的分布列为:

0

1

2

4

5

8

…………10分

 

的期望 ………………12分

1.jpg20.解:(Ⅰ)因为平面,   

所以平面平面,………………1分

,所以平面

,又 ………2分

所以平面; ………………………3分

(Ⅱ)因为,所以四边形为菱形,

又D为AC中点,知 ……………4分

中点F,则平面,从而平面平面………………6分

,则

高三数学(理科)(模拟一)答案第2页

    在中,,故  ……………………………7分

到平面的距离为 …………………………………………8分

(Ⅲ)过,连,则

从而为二面角的平面角,  ……………………………………9分

,所以

中,………………………………………11分

故二面角的大小为 ………………………………………12分

解法2:(Ⅰ)如图,取AB的中点E,则DE//BC,因为

1.jpg所以平面…………………1分

轴建立空间坐标系,

 ……………………2分

从而平面   ……………3分

(Ⅱ)由,得 ………4分

设平面的法向量为

所以……………………………7分

所以点到平面的距离………………………………8分

(Ⅲ)再设平面的法向量为

 所以 …………………………………9分

,根据法向量的方向, ………………………11分

可知二面角的大小为………………………………………12分

高三数学(理科)(模拟一)答案第3页

21.解:(1)∵的图象关于原点对称,∴恒成立,即

的图象在处的切线方程为…2分

,且 …………………3分

解得 故所求的解析式为 ……6分

(2)解

,由且当时,  ………………………………………………………………………………8分

递增;在上递减。…9分

上的极大值和极小值分别为

故存在这样的区间其中一个区间为…12分

22. 解:(1)由题意得

① …………………………………2分

在双曲线上,则

联立①、②,解得:

由题意,∴点T的坐标为(2,0). ………………………………4分

(2)设直线的交点M的坐标为

、P、M三点共线,得:  ①

三点共线,得:

联①、②立,解得: ……………………………………………6分

在双曲线上,∴

∴轨迹E的方程为  ………………………………………8分

高三数学(理科)(模拟一)答案第4页

(3)容易验证直线的斜率不为0.

故要设直线的方程为代入中得:

,则由根与系数的关系,

得:,①   ②  ………………………………10分

,∴有。将①式平方除以②式,得:

  ……………………………………………………………12分

  ∴

  …………………14分

 

 

 

 

 

高三数学(理科)(模拟一)答案第5页

 

 

 

 


同步练习册答案