将点的坐标代入曲线的方程.得 查看更多

 

题目列表(包括答案和解析)

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5

 

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;

(3)试预测加工10个零件需要多少时间?

(注:)

【解析】第一问中利用数据描绘出散点图即可

第二问中,由表中数据得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回归方程。

第三问中,将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时)得到结论。

(1)散点图如下图.

………………4分

(2)由表中数据得=52.5, =3.5,=3.5,=54,

=…=0.7,=…=1.05.

=0.7x+1.05.回归直线如图中所示.………………8分

(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时),

∴预测加工10个零件需要8.05小时

 

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.

  已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足

(1) 求动点所在曲线的轨迹方程;

(2)(理科)过点作斜率为的直线交曲线两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

(文科)过点作斜率为的直线交曲线两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.

 

查看答案和解析>>

(本小题满分14分)在平面直角坐标系中,已知两圆,动圆内部且和圆相内切且和圆相外切,动圆圆心的轨迹为

(1)求的标准方程;

(2)点上一动点,点为坐标原点,曲线的右焦点为,求的最小值

 

查看答案和解析>>


同步练习册答案