Sn +Sn?1 = .即:= n. 查看更多

 

题目列表(包括答案和解析)

已知Sn是数列{an}的前n项和,数学公式(n≥2,n∈N*),且数学公式
(1)求a2的值,并写出an和an+1的关系式;
(2)求数列{an}的通项公式及Sn的表达式;
(3)我们可以证明:若数列{bn}有上界(即存在常数A,使得bn<A对一切n∈N*恒成立)且单调递增;或数列{bn}有下界(即存在常数B,使得bn>B对一切n∈N*恒成立)且单调递减,则数学公式存在.直接利用上述结论,证明:数学公式存在.

查看答案和解析>>

已知:函数数学公式,数列{an}对n≥2,n∈N总有数学公式
(1)求{an}的通项公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若数列{bn}满足:①{bn}为数学公式的子数列(即{bn}中的每一项都是数学公式的项,且按在数学公式中的顺序排列)②{bn}为无穷等比数列,它的各项和为数学公式.这样的数列是否存在?若存在,求出所有符合条件的数列{bn},写出它的通项公式,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

已知:函数,数列{an}对n≥2,n∈N总有
(1)求{an}的通项公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若数列{bn}满足:①{bn}为的子数列(即{bn}中的每一项都是的项,且按在中的顺序排列)②{bn}为无穷等比数列,它的各项和为.这样的数列是否存在?若存在,求出所有符合条件的数列{bn},写出它的通项公式,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

已知:函数,数列{an}对n≥2,n∈N总有
(1)求{an}的通项公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若数列{bn}满足:①{bn}为的子数列(即{bn}中的每一项都是的项,且按在中的顺序排列)②{bn}为无穷等比数列,它的各项和为.这样的数列是否存在?若存在,求出所有符合条件的数列{bn},写出它的通项公式,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

数列{an}的项是由1或0构成,且首项为1,在第k个1和第k+1个1之间有2k-1个0,即数列{an}为:1,0,1,0,0,0,1,0,0,0,0,0,1,…,记数列{an}的前n项和为Sn,则S2013=
45
45

查看答案和解析>>


同步练习册答案