题目列表(包括答案和解析)
与圆x2+y2-4y=0外切, 又与x轴相切的圆的圆心轨迹方程是 ( ).
A. y2=8x B. y2=8x (x>0) 和 y=0
C. x2=8y (y>0) D. x2=8y (y>0) 和 x=0 (y<0)
已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k等于( )
(A)
(B)
(C)
(D) ![]()
已知椭圆E:
+
=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为
.
(1)求椭圆E的方程;
(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足
=
+
,证明
·
为定值,并求出该值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com