知..故 查看更多

 

题目列表(包括答案和解析)

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

已知中,.设,记.

(1)   求的解析式及定义域;

(2)设,是否存在实数,使函数的值域为?若存在,求出的值;若不存在,请说明理由.

【解析】第一问利用(1)如图,在中,由,,

可得

又AC=2,故由正弦定理得

 

(2)中

可得.显然,,则

1当m>0的值域为m+1=3/2,n=1/2

2当m<0,不满足的值域为

因而存在实数m=1/2的值域为.

 

查看答案和解析>>

中,已知 ,面积

(1)求的三边的长;

(2)设(含边界)内的一点,到三边的距离分别是

①写出所满足的等量关系;

②利用线性规划相关知识求出的取值范围.

【解析】第一问中利用设中角所对边分别为

    

又由 

又由 

       又

的三边长

第二问中,①

依题意有

作图,然后结合区域得到最值。

 

查看答案和解析>>

已知向量=(),=(,),其中().函数,其图象的一条对称轴为

(I)求函数的表达式及单调递增区间;

(Ⅱ)在△ABC中,abc分别为角A、B、C的对边,S为其面积,若=1,b=l,S△ABC=,求a的值.

【解析】第一问利用向量的数量积公式表示出,然后利用得到,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。

解:因为

由余弦定理得,……11分故

 

查看答案和解析>>


同步练习册答案