19. 已知数列中.且 查看更多

 

题目列表(包括答案和解析)

(本题满分12 分)

已知数列为等比数列,且首项为,公比为,前项和为.

(Ⅰ)试用表示前项和

(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。

 

查看答案和解析>>

(本题满分12 分)
已知数列为等比数列,且首项为,公比为,前项和为.
(Ⅰ)试用表示前项和
(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。

查看答案和解析>>

(本题满分12 分)
已知数列为等比数列,且首项为,公比为,前项和为.
(Ⅰ)试用表示前项和
(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。

查看答案和解析>>

(本小题满分12分)
已知数列中,为常数),的前项和,且的等差中项.
(Ⅰ)求;[来源:学*科*网]
(Ⅱ)求数列的通项公式;
(Ⅲ)若为数列的前项和,求的值.

查看答案和解析>>

(本小题满分12分)

已知数列中,,且点在直线上.数列中,

(Ⅰ) 求数列的通项公式(Ⅱ)求数列的通项公式; 

(Ⅲ)(理)若,求数列的前项和.

 

查看答案和解析>>

.选择题:

1

2

3

4

5

6

7

8

9

10

11

12

B

D

A

D

C

D

A

C

B

A

C

B

.填空题:

13. 7 ;14.;15. ;16①②③④

三.解答题:

18. 记第一、二、三次射击命中目标分别为事件A,B,C三次均未命中目标的事件为D.依题意. 设在处击中目标的概率为,则,由

,所以, 2分  

5 分

(Ⅰ)由于各次射击都是独立的,所以该射手在三次射击击中目标的概率为

.  8分

 

(Ⅱ)依题意,设射手甲得分为,则

,所以的分布列为

所以。    12分

 

 

 

20. (Ⅰ)证明:连结于点,连结.

在正三棱柱中,四边形是平行四边形,

.

.   ………………………2分

      ∵平面平面

∥平面.       …………………………4分

 

(Ⅱ)过点,过点,连结.

∵平面平面平面,平面平面

      ∴平面.

在平面内的射影.

.

是二面角的平面角.  

在直角三角形中,.

同理可求: .

.

.   …………………………12分

 

21.(Ⅰ),令,解得,1分   

时,为增函数;当为减函数;当为增函数。4分  时,取得极大值为-4,当时,取处极小值为。…………………………6分

(Ⅱ)设上恒成立.

,,若,显然。 8分   若,

,令,解得,或,当时,

,当时,.10分  

 当时,.

,解不等式得,,当时,

满足题意.综上所述的范围为…………...12分

 

 

 


同步练习册答案