.当时.有.则应满足的关系一定是 查看更多

 

题目列表(包括答案和解析)

,当时,有,则应满足的关系一定是

A.        B.             C.            D.

查看答案和解析>>

 下列一组命题:

①在区间内任取两个实数,求事件“恒成立”的概率是

②从200个元素中抽取20个样本,若采用系统抽样的方法则应分为10组,每组抽取2个

③函数关于(3,0)点对称,满足,且当时函数为增函数,则上为减函数。

④命题“对任意,方程有实数解”的否定形式为“存在,方程无实数解”

以上命题中正确的是              

 

查看答案和解析>>

下列一组命题:                                                

①在区间内任取两个实数,求事件“恒成立”的概率是

②从200个元素中抽取20个样本,若采用系统抽样的方法则应分为10组,每组抽取2个;

③函数关于(3,0)点对称,满足,且当时函数为增函数,则上为减函数;

④命题“对任意,方程有实数解”的否定形式为“存在,方程无实数解”。             

以上命题中正确的是              

查看答案和解析>>

某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数)的图象,且是常数.

(1)写出服药后yx的函数关系式;

(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?

(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)

查看答案和解析>>

(满分16分)

某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数)的图象,且是常数.

(1)写出服药后y与x的函数关系式;

(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?

(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)

 

查看答案和解析>>

一.选择题

序号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

C

C

B

D

A

二填空题

13.;                14.-6 ;         15.;           16..

三.解答题

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4.

.……………………………………………………………… 2分

则V=.     ……………………………………………………………… 4分

 

(Ⅱ)∵PA=CA,F为PC的中点,∴AF⊥PC.                …………………………5分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC.     …………………………7分

∵AF∩EF=F,∴PC⊥平面AEF.…………………………………………………………8分

(Ⅲ)以A为坐标原点,AD,AP所在直线分别为y轴,z轴,建立空间直角坐标系,

则平面PAD的法向量为:=(1,0,0)

由(Ⅱ)知AF⊥PC,AF⊥CD   ∴AF⊥平面PCD

为平面PCD的法向量.

∵P(0,0,2),C=

,即二面角C-PD-A的余弦值为…………12分

19.解:设第一个匣子里的三把钥匙为A,B,C,第二个匣子里的三把钥匙为a,b,c(设A,a能打开所有门,B只能打开第一道门,b只能打开第二道门,C,c不能打开任何一道门)

(Ⅰ)…………………………………………………………………………4分

(Ⅱ)(第一次只能拿B,第二次只能拿c) ……………………………6分

(第一次只能拿B,第二次只能拿b) ……………………………8分

(第一次拿A,第二次随便拿,或第一次拿B,第二次拿a) …10分

                   …………………………12分

 

20.(Ⅰ)依题

 

…………………………………………………3分

为等差数列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)设公比为q,则由b1b2b3=8,bn>0…………………………………………………6分

成等差数列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

 

21解:(Ⅰ)依题PN为AM的中垂线

…………………………………………………………2分

又C(-1,0),A(1,0)

所以N的轨迹E为椭圆,C、A为其焦点…………………………………………………………4分

a=,c=1,所以为所求………………………………………………………5分

(Ⅱ)设直线的方程为:y=k(x-1)代入椭圆方程:x2+2y2=2得

(1+2k2)x2-4k2x+2k2-2=0………………(1)

设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.

…………………………………………………………7分

依题

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解:(Ⅰ)

,则

   即成等差数列……………………3分

(Ⅱ)依题意

    

∴切线

,即

∴切线过点.……………………………………………………………………………8分

(Ⅲ),则

   ∴

时:

时,,此时为增函数;

时,,此时为减函数;

时,,此时为增函数.

    而,依题意有    ………………10分

时:时,

  即……(☆)

,则

为R上的增函数,而,∴时,

恒成立,(☆)无解.

综上,为所求.…………………………………………………………………………14分

 

 


同步练习册答案