解:(1)设椭圆方程为:..由已知 查看更多

 

题目列表(包括答案和解析)

已知点E、F的坐标分别是(-2,0)、(2,0),直线EP、FP相交于点P,且它们的斜率之积为-
1
4

(1)求证:点P的轨迹在一个椭圆C上,并写出椭圆C的方程;
(2)设过原点O的直线AB交(1)中的椭圆C于点A、B,定点M的坐标为(1,
1
2
)
,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)反思(2)题的解答,当△MAB的面积取得最大值时,探索(2)题的结论中直线AB的斜率kAB和OM所在直线的斜率kOM之间的关系.由此推广到点M位置的一般情况或椭圆的一般情况(使第(2)题的结论成为推广后的一个特例),试提出一个猜想或设计一个问题,尝试研究解决.
[说明:本小题将根据你所提出的猜想或问题的质量分层评分].

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

已知点E、F的坐标分别是(-2,0)、(2,0),直线EP、FP相交于点P,且它们的斜率之积为
(1)求证:点P的轨迹在一个椭圆C上,并写出椭圆C的方程;
(2)设过原点O的直线AB交(1)中的椭圆C于点A、B,定点M的坐标为,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)反思(2)题的解答,当△MAB的面积取得最大值时,探索(2)题的结论中直线AB的斜率kAB和OM所在直线的斜率kOM之间的关系.由此推广到点M位置的一般情况或椭圆的一般情况(使第(2)题的结论成为推广后的一个特例),试提出一个猜想或设计一个问题,尝试研究解决.
[说明:本小题将根据你所提出的猜想或问题的质量分层评分].

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步练习册答案