题目列表(包括答案和解析)
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。
设抛物线![]()
的焦点为
,过
且垂直于
轴的直线与抛物线交于
两点,已知
.
(1)求抛物线
的方程;
(2)设
,过点
作方向向量为
的直线与抛物线
相交于
两点,求使
为钝角时实数
的取值范围;
(3)①对给定的定点![]()
,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。
②对
,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?(只要求写出结论,不需用证明)
(本题满分14分)
如图,在平面直角坐标系
中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点.一条垂直于
轴的直线,分别与线段
和直线
交于点
.
(1)若
,求
的值;(5分)
(2)若
为线段
的中点,求证:
为此抛物线的切线;(5分)
(3)试问(2)的逆命题是否成立?说明理由.(4分)
![]()
(本题14分)如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米,建立适当的直角坐标系,(1)求抛物线方程.(2)若将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
![]()
(本题满分15分)如图,已知直线
与抛物线
和圆
都相切,
是
的焦点.
(1)求
与
的值;
(2)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
为邻边作平行四边形
,证明:点
在一条定直线上;
(3)在(2)的条件下,记点
所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
两点,求
的面积
的取值范围.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com