题目列表(包括答案和解析)
(本小题满分12分)
如图,已知直线l与抛物线
相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(I) 若动点M满足
,求点M的轨迹C;
(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(本小题满分12分)
如图,设抛物线C1:
的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率
的椭圆C2与抛物线C1在x轴上方的交点为P。
当m = 1时,求椭圆C2的方程;
当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2……⊙Cn是圆心在
上的一系列圆,它们的圆心纵坐标分别为a1,a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ck(k = 1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.
|
(本小题满分12分)已知点
,过点
作抛物线![]()
的切线
,切点
在第二象限,如图.
(Ⅰ)求切点
的纵坐标;
(Ⅱ)若离心率为
的椭圆
恰好经过切点
,设切线
交椭圆的另一点为
,记切线
的斜率分别为
,若
,求椭圆方程.![]()
(本小题满分12分)
![]()
过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线
,过其焦点F的直线交抛物线于
、
两点。过
、
作准线的垂线,垂足分别为
、
.
![]()
(1)求出抛物线的通径,证明
和
都是定值,并求出这个定值;
(2)证明:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com