若p:x∈R,sinx1,则 (A)p: x∈R,sinx>1 (B) p:x∈R,sinx>1 (C)p:x∈R,sinx1 (D) p: x∈R,sinx1 查看更多

 

题目列表(包括答案和解析)

下列命题中,其中真命题的个数有(  )个
①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ)
②△ABC为锐角三角形是tanA+tanB+tanC>0的充要条件
③若|
a
+
b
|=|
a
-
b
|,
a
b
=0

④函数f(x)=
x-1
2x+1
,(-
1
2
,-
1
2
)
是其对称中心
⑤命题P:?x∈R,mx2+1≤0,命题q:?x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围是m>2.

查看答案和解析>>

给出以下四个结论:
①函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

②若不等式mx2-mx+1>0对任意的x∈R都成立,则0<m<4;
③已知点P(a,b)与点Q(l,0)在直线2x-3y+1=0两侧,则3b-2a>1;
④若将函数f(x)=sin(2x-
π
3
)
的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是
π
12

其中正确的结论是:
 

查看答案和解析>>

有以下四个命题:
①若命题p:?x∈R,x>sinx,则?p:?x∈R,x<sinx
②函数y=sin(x-
π
2
)在[0,π
]在R上是奇函数.
③把函数y=3sin(2x+
π
3
)的图象向右平移
π
6
向左平移
π
6
得到y=3sin2x的图象.
④若函数f(x)=-cos2x+
1
2
(x∈R),则f(x)是最小正周期为φ=
π
3
的偶函数
⑤设圆x2+y2-4x-2y-8=0上有关于直线ax+2by-2=0(a,b>0)对称的两点,则
1
a
+
2
b
的最小值为3+2
2

其中正确命题的序号是
 
(把你认为正确命题的序号都填上).

查看答案和解析>>

下列说法错误的序号是
 

(1)“sinθ=
12
”是“θ=30°”的充分不必要条件;
(2)命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
(3)若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
(4)如果命题“?p”与命题“p或q”都是真命题,那么命题q一定是真命题.

查看答案和解析>>

给出下列结论.
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②将函数y=cos(
2
+x)
的图象上每个点的横坐标缩短为原来的
1
2
(纵坐标不变),再向左平行移动
π
4
个单位长度变为函数y=sin(2x+
π
4
)
的图象;
③已知ξ~N(16,σ2),若P(ξ>17)=0.35,则P(15<ξ<16)=0.15;
④已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(2
2
,+∞)

其中真命题的序号是
①③
①③
(把所有真命题的序号都填上).

查看答案和解析>>


同步练习册答案