题目列表(包括答案和解析)
由所有既属于集合A又属于集合B的元素所成的集合,叫做A与B的________,记作A∩B,即A∩B={x|x∈A,且x∈B}.
可这样理解:交集A∩B是由两集合A与B的“公有”元素所组成的集合.用Venn图表示,如图.
易知:(1)若两集合A与B无公共关系,则A∩B=________;
(2)A∩B________A,A∩B________B;
(3)A∩A=________,A∩
=________,A∩B=B∩A;
(4)若A
B,则A∩B=________;若A∩B=A,则A________B;
(5)设U为全集,则A∩(
A)=________.
| 1 | 16 |
| 1 |
| 3 |
| 1 |
| 3 |
| y2 |
| m |
| EF |
| EP |
| 1 |
| 3 |
| PF |
| 2 |
| MA |
| MB |
| 9 |
| 2 |
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com