4.解:(1)当.即时., (2)当时.且.即.得, 当时.且.即.得. 查看更多

 

题目列表(包括答案和解析)

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

函数)满足:,且对任意实数x均有0成立

(1)求实数的值;

(2)当时,求函数的最大值.

【解析】(1) 恒成立.

(2)

     对称轴,由于开口方向向上,所以求最大值时对称轴要与区间中间进行比较讨论即可.

 

查看答案和解析>>

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>


同步练习册答案