(1)若数列是首项和公差都是1的等差数列.求证:数列是等比数列, 查看更多

 

题目列表(包括答案和解析)

数列an的首项为a(a>0),它的前n项的和是Sn
(1)若数列an是等差数列,公差为d,d≠0,且数列
Sn
an
也是等差数列,①求d;②求证:∑i=1n
2Si 
a
n2+2n
2

(2)数列Sn是公比为q的等比数列,且q≠1,不等式Sn.≥kan对任意正整数n都成立,求k的值或k的取值范围.

查看答案和解析>>

数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),数列{bn}的前n项和为Sn
(1)若数列{an}的公差d等于首项a1,试用数学归纳法证明:对于任意n∈N*,都有Sn=
b1an+34d

(2)若数列{an}满足:3a5=8a12>0,试问n为何值时,Sn取得最大值?并说明理由.

查看答案和解析>>

等差数列{an}的首项和公差都是
23
,记{an}前n项和为Sn.等比数列{bn}各项均为正数,公比为q,记{bn}的前n项和为Tn
(Ⅰ) 写出Si(i=1,2,3,4,5)构成的集合A;
(Ⅱ) 若q为正整数,问是否存在大于1的正整数k,使得Tk,T2k同时为集合A中的元素?若存在,写出所有符合条件的{bn}的通项公式;若不存在,请说明理由;
(Ⅲ) 若将Sn中的整数项按从小到大的顺序构成数列{cn},求{cn}的一个通项公式.

查看答案和解析>>

数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),数列{bn}的前n项和为Sn
(1)若数列{an}的公差d等于首项a1,试用数学归纳法证明:对于任意n∈N*,都有Sn=数学公式
(2)若数列{an}满足:3a5=8a12>0,试问n为何值时,Sn取得最大值?并说明理由.

查看答案和解析>>

数列an的首项为a(a>0),它的前n项的和是Sn
(1)若数列an是等差数列,公差为d,d≠0,且数列也是等差数列,①求d;②求证:∑i=1n
(2)数列Sn是公比为q的等比数列,且q≠1,不等式Sn.≥kan对任意正整数n都成立,求k的值或k的取值范围.

查看答案和解析>>


同步练习册答案