令.则由题意可得.在上有唯一解. 查看更多

 

题目列表(包括答案和解析)

如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.

(Ⅰ)设Q为AE的中点,证明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二问中,作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值为

 

查看答案和解析>>

关于在区间上的可导函数,有下列命题 :①上是减函数的充要条件是;②上的点的极值点的充要条件是;③若上有唯一的极值点,则一定是的最值点;④上一点的左右两侧的导数异号的充要条件是点是函数的极值点。其中正确命题的序号为(    )。

查看答案和解析>>

已知函数f(x)=ax2+lnx(x>0),g(x)=2x(x∈R),函数h(x)=f(x)-g(x)在区间(0,+∞)上为增函数.
(1)求实数a的取值范围;
(2)设f′(x)、h′(x)分别是f(x)、h(x)的导函数,若方程h′(x)=0在区间(0,+∞)上有唯一解,
①令函数mn(x)=[f′(x)]n-f(xn+
1
xn
),其中n∈N*且n≥2.2函数y=mn(x)在区间(0,+∞)上的最小值;
②求证:对任意的正实数x,都有
n
i=2
1
mi(x)
5
6

查看答案和解析>>

方程lg(-x2+3x-m)-lg(3-x)=0在[0,3]上有唯一解,则m的取值范围是_____________.

 

查看答案和解析>>

已知函数f(x)=ax2+lnx(x>0),g(x)=2x(x∈R),函数h(x)=f(x)-g(x)在区间(0,+∞)上为增函数.
(1)求实数a的取值范围;
(2)设f′(x)、h′(x)分别是f(x)、h(x)的导函数,若方程h′(x)=0在区间(0,+∞)上有唯一解,
①令函数mn(x)=[f′(x)]n-f(xn+),其中n∈N*且n≥2.2函数y=mn(x)在区间(0,+∞)上的最小值;
②求证:对任意的正实数x,都有

查看答案和解析>>


同步练习册答案