题目列表(包括答案和解析)
| ||
| 2 |
设函数
.
(1)若函数
图像上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
的
“分界线”.设
,试探究
是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.![]()
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)判断函数
是否是有界函数,请写出详细判断过程;
(2)试证明:设
,若
在
上分别以
为上界,
求证:函数
在
上以
为上界;
(3)若函数
在
上是以3为上界的有界函数,
求实数
的取值范围.
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)判断函数
是否是有界函数,请写出详细判断过程;
(2)试证明:设
,若
在
上分别以
为上界,
求证:函数
在
上以
为上界;
(3)若函数
在
上是以3为上界的有界函数,
求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com