由此得: 查看更多

 

题目列表(包括答案和解析)

由原点O向三次曲线y=x3-3ax2(a≠0)引切线,切点为P1(x1,y1)(O,P1两点不重合),再由P1引此曲线的切线,切于点P2(x2,y2)(P1,P2不重合),如此继续下去,得到点列:{Pn(xn,yn)}
(1)求x1
(2)求xn与xn+1满足的关系式;
(3)若a>0,试判断xn与a的大小关系,并说明理由

查看答案和解析>>

由原点O向三次曲线y=x3-3ax2+bx(a≠0)引切线,切于不同于点O的点P1(x1,y1),再由P1引此曲线的切线,切于不同于P1的点P2(x2,y2),如此继续地作下去,…,得到点列{Pn(xn,yn)},试回答下列问题:
(1)求x1
(2)求xn与xn+1的关系;
(3)若a>0,求证:当n为正偶数时,xn<a;当n为正奇数时,xn>a.

查看答案和解析>>

由坐标原点O向曲线y=x3-3ax2+bx(a≠0)引切线,切于O以外的点P1(x1,y1),再由P1引此曲线的切线,切于P1以外的点P2(x2,y2),如此进行下去,得到点列{ Pn(xn,yn}}.
求:(Ⅰ)xn与xn-1(n≥2)的关系式;
(Ⅱ)数列{xn}的通项公式.

查看答案和解析>>

由原点向三次曲线引切线,切于不同于点的点

,再由引此曲线的切线,切于不同于的点,如此继续地作下去,……,得到点列,试回答下列问题: ⑴求; (2)求的关系式;

(3)若,求证:当为正偶数时, ;当为正奇数时, .

查看答案和解析>>

由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(I )若视力测试结果不低于5 0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;

(II)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望,据此估计该校高中学生(共有5600人)好视力的人数

 

查看答案和解析>>


同步练习册答案