题目列表(包括答案和解析)
| 下午开始上课时间 | 1:30 | 1:40 | 1:50 | 2:00 | 2:10 |
| 平均每天午休人数 | 250 | 350 | 500 | 650 | 750 |
| 下午开始上课时间 | 1:30 | 1:40 | 1:50 | 2:00 | 2:10 |
| 平均每天午休人数 | 250 | 350 | 500 | 650 | 750 |
已知函数
在
处取得极值2.
⑴ 求函数
的解析式;
⑵ 若函数
在区间
上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数![]()
又f(x)在x=1处取得极值2,所以
,
所以![]()
第二问中,
因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得![]()
解:⑴ 求导
,又f(x)在x=1处取得极值2,所以
,即
,所以
…………6分
⑵ 因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得
, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得
…………12分
.综上所述,当
时,f(x)在(m,2m+1)上单调递增,当
时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是
或![]()
已知函数![]()
(1)若函数
的图象经过P(3,4)点,求a的值;
(2)比较
大小,并写出比较过程;
(3)若
,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数
的图象经过P(3,4)点,所以
,解得
,因为
,所以
.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由
知,
.,指对数互化得到
,,所以
,解得所以,
或
.
解:⑴∵函数
的图象经过
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵当
时,
;
当
时,
. ……………… 6分
因为,
,![]()
当
时,
在
上为增函数,∵
,∴
.
即
.当
时,
在
上为减函数,
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
已知幂函数
满足
。
(1)求实数k的值,并写出相应的函数
的解析式;
(2)对于(1)中的函数
,试判断是否存在正数m,使函数
,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数
满足
,得到![]()
因为
,所以k=0,或k=1,故解析式为![]()
(2)由(1)知,
,
,因此抛物线开口向下,对称轴方程为:
,结合二次函数的对称轴,和开口求解最大值为5.,得到![]()
(1)对于幂函数
满足
,
因此
,解得
,………………3分
因为
,所以k=0,或k=1,当k=0时,
,
当k=1时,
,综上所述,k的值为0或1,
。………………6分
(2)函数
,………………7分
由此要求
,因此抛物线开口向下,对称轴方程为:
,
当
时,
,因为在区间
上的最大值为5,
所以
,或
…………………………………………10分
解得
满足题意
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com