题目列表(包括答案和解析)
| n2+n |
| 12+1 |
| k2+k |
| (k+1)2+(k+1) |
| k2+3k+2 |
| (k2+3k+2)+(k+2) |
| (k+2)2 |
| A、过程全部正确 |
| B、n=1验得不正确 |
| C、归纳假设不正确 |
| D、从n=k到n=k+1的推理不正确 |
已知
,(其中
)
⑴求
及
;
⑵试比较
与
的大小,并说明理由.
【解析】第一问中取
,则
;
…………1分
对等式两边求导,得![]()
取
,则
得到结论
第二问中,要比较
与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当
时,
;
当
时,
;
猜想:当
时,
运用数学归纳法证明即可。
解:⑴取
,则
;
…………1分
对等式两边求导,得
,
取
,则
。 …………4分
⑵要比较
与
的大小,即比较:
与
的大小,
当
时,
;
当
时,
;
当
时,
;
…………6分
猜想:当
时,
,下面用数学归纳法证明:
由上述过程可知,
时结论成立,
假设当
时结论成立,即
,
当
时,![]()
而![]()
∴![]()
即
时结论也成立,
∴当
时,
成立。
…………11分
综上得,当
时,
;
当
时,
;
当
时,
对于不等式
某同学应用数学归纳法证明的过程如下:
(1)当
时,
,不等式成立
(2)假设
时,不等式成立,即![]()
那么
时,
![]()
不等式成立根据(1)(2)可知,对于一切正整数
不等式都成立。上述证明方法( )
A.过程全部正确 B.
验证不正确
C.归纳假设不正确 D.从
到
的推理不正确
(1)当n=1时,
≤1+1,不等式成立.
(2)假设n=k(k∈N+)时,不等式成立,即
<k+1,则n=k+1时,
![]()
=(k+1)+1.
所以当n=k+1时,不等式成立.
上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
(1)当n=1时,
≤1+1,不等式成立.
(2)假设n=k(k∈N*)时不等式成立,即
<k+1,则n=k+1时,
=
<
=
=(k+1)+1,
∴当n=k+1时,不等式成立.上述证法
A.过程全程正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com