(1)证明:平面, 查看更多

 

题目列表(包括答案和解析)

平面内n条直线,其中任何两条不平行,任何三条不共点.
(1)设这n条直线互相分割成f(n)条线段或射线,猜想f(n)的表达式并给出证明;
(2)求证:这n条直线把平面分成
n(n+1)2
+1
个区域.

查看答案和解析>>

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分别为CE、AB的中点.
(I)求证:OD∥平面ABC;
(II)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

查看答案和解析>>

平面内n条直线,其中任何两条不平行,任何三条不共点.
(1)设这n条直线互相分割成f(n)条线段或射线,猜想f(n)的表达式并给出证明;
(2)求证:这n条直线把平面分成数学公式个区域.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BDAE,BD⊥BA,BD=
1
2
AE=2
,O、M分别为CE、AB的中点.
(I)求证:OD平面ABC;
(II)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
精英家教网

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分.

 

题号

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

D

A

B

B

C

D

 

二、填空题:本大题7小题,每小题4分,共28分.

11、; 12、 ; 13、;  14、; 15、;  16、 ;17、

三、解答题

18、(1)略   …………………………………………………………………………(7分)

(2)  …………………………………………………………(14分)

19、(1)tanA=     …………………(7分)

(2) 原式=

=   ……………………………………………………………………(14分)

20、(1)略      ……………………………………………………………………(7分)

(2)就是二面角的平面角,即

 …………………………………………………………………(9分) 

 取中点,则平面

就是与平面所成的角。   …………………………(11分)

所以与平面所成的角的大小为。 …………………………(14分)

(用向量方法,相应给分)

21、(1)

         又在区间(-∞,0)及(4,+∞)上都是增函数,在区间(0,4)上是减函数,      又.………(6分)

   (2)

         当点是切点时,切线方程为9x+6y-16=0.………………(10分)

当点不是切点时,切点为

     所以切点为

切线方程为.……………………………………(14分)

22、解:解:(1)、设,则

 ∵点P分所成的比为   ∴    ∴  

     代入中,得 为P点的轨迹方程.

时,轨迹是圆. …………………………………………………(8分)

(2)、由题设知直线l的方程为, 设

联立方程组  ,消去得: 

∵ 方程组有两解  ∴   ∴    

   ∵

      ∴    

又 ∵    ∴    解得(舍去)或

∴ 曲线C的方程是  ……………………………………………(16分)


同步练习册答案