题目列表(包括答案和解析)
已知函数
,数列
的项满足:
,(1)试求![]()
(2) 猜想数列
的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系
, ![]()
, ![]()
第二问中,由(1)猜想得:
然后再用数学归纳法分为两步骤证明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(数学归纳法证明)i)
,
,命题成立
ii) 假设
时,
成立
则
时,![]()
![]()
![]()
综合i),ii) :
成立
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线
的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到
,又因为
,这样可知得到
。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用
可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为
…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
已知四棱锥
的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(1)证明:面
面
;
(2)求
与
所成的角;
(3)求面
与面
所成二面角的余弦值.
![]()
【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.
(2)建立空间直角坐标系,写出向量
与
的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.
(3)分别求出平面
的法向量和面
的一个法向量,然后求出两法向量的夹角即可.
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量![]()
![]()
(Ⅰ)求角A的大小;
(Ⅱ)若
,试判断b·c取得最大值时△ABC形状.
【解析】本试题主要考查了解三角形的运用。第一问中利用向量的数量积公式
,且由![]()
(2)问中利用余弦定理
,以及
,可知
,并为等边三角形。
解:(Ⅰ)![]()
![]()
![]()
………………………………6分
(Ⅱ)![]()
………………………………8分
![]()
……………10分
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com